WEST VIRGINIA SECRETARY OF STATE NATALIE E. TENNANT ADMINISTRATIVE LAW DIVISION

Do l	Not	Mark	in Th	is Box
------	-----	------	-------	--------

	CPROMOTES			Markets		
--	------------------	--	--	---------	--	--

2010 HAR -3 PM 4:58

Form #1

SECRETARY OF STATE

Authorized Signature

NOTICE OF A PUBLIC HEARING ON A PROPOSED RULE

AGENCY: WV Department of Environmental Protection, DWWM	TITLE NUMBER:	47	
	ITY: W. Va. Code §22-11-4(a)(16); §22-11-7b	•
AMENDMENT TO AN EXISTING RULE: YES NO	en e		
IF YES, SERIES NUMBER OF RULE BEING AMENDED: 2	· · · · · · · · · · · · · · · · · · ·		
TITLE OF RULE BEING AMENDED: Requirements Governing	Water Quality Standards		
			•
IF NO, SERIES NUMBER OF RULE BEING PROPOSED:			
TITLE OF RULE BEING PROPOSED:			
		 	
DATE OF PUBLIC HEARING: April 1, 2010	TIMI	6:00 PM	-
LOCATION OF PUBLIC HEARING: WV Department of Environmental Protection			
601 57th Street S.E., Charleston, WV			
Coopers Rock Training Room			
			-
COMMENTS LIMITED TO: ORAL WRITTEN BOTH			
DATE WRITTEN COMMENT PERIOD ENDS: April 5, 2010	TIMI	5:00 P.M.	
WRITTEN COMMENTS MAY BE MAILED TO:	Kathy Cosco, Public Informat	ion Office	
The Department requests that persons wishing to make	WV Department of Environm	ental Protection	
comments at the hearing make an effort to submit written	601 57th Street S.E.	· ·	
comments in order to facilitate the review of these comments.	Charleston, WV 25304		
The issues to be heard shall be limited to the proposed rule.	·.		
	11-2		
ATTACH A RRIEF SHMMARY OF YOUR PROPOSAL	Me Thompsol		

DEPARTMENT OF ENVIRONMENTAL PROTECTION

BRIEFING DOCUMENT

Rule Title:

"Requirements Governing Water Quality Standards," 47CSR2

A. AUTHORITY:

W.Va. Code §22-11-4(a)(16); 22-11-7b

B. SUMMARY OF RULE:

This rule establishes requirements governing surface water quality standards for the waters of the State and establishes standards of purity and quality consistent with public health and the enjoyment thereof, the protection of animal, aquatic and plant life and the expansion of employment opportunities, agricultural expansion and a foundation for healthy industrial development.

C. STATEMENT OF CIRCUMSTANCES WHICH REQUIRE RULE:

The DEP is proposing an emergency rule to make a site-specific exception to the half-mile rule so that it shall not apply to the Ohio River main channel (between Brown's Island and the left descending bank) between river mile points 61.0 and 63.5. All mixing zone regulations found in section 5 of this rule will apply except 47 CSR 2 §5.2.h.6. Whether a mixing zone is appropriate, and the proper size of such zones, would need to be considered on a site-specific basis in accordance with the EPA approved West Virginia mixing zone regulations in 47 CSR 2 §5. The West Virginia WQS regulations, as modified by this revision, would still be fully protective of the public water supply use in this segment of the Ohio River while eliminating unnecessary treatment costs to the regulated community. The site-specific exemption currently in the rule expires September 1, 2010 and given the financial performance of ArcelorMittal Weirton Inc. over the past several years and current economic conditions in the area, large capital investments with no environmental gain cannot be justified. An emergency rule is therefore justified as necessary to prevent substantial harm to the public interest.

D. FEDERAL COUNTERPART REGULATIONS - INCORPORATION BY REFERENCE/DETERMINATION OF STRINGENCY:

Although the State is required by the federal Clean Water Act to adopt water quality standards, there is no direct federal counterpart regulation. Therefore, no determination of stringency is required.

E. CONSTITUTIONAL TAKINGS DETERMINATION:

In accordance with §22-1A-1 and 3(c), the Secretary has determined that this rule will not result in taking of private property within the meaning of the Constitutions of West Virginia and the United States of America.

F. CONSULTATION WITH THE ENVIRONMENTAL PROTECTION ADVISORY COUNCIL:

At its upcoming meeting on March 18, 2010, the Environmental Protection Advisory Council will discuss this rule.

APPENDIX B

FISCAL NOTE FOR PROPOSED RULES

Rule Title:	Requirements Govering Water Quality Standards, 47CSR2					
Type of Rule:	Legislative Interpretive Procedural					
Agency:	West Virginia Department of Environmental Protection	_				
Address: 601 57th Street, SE						
Charleston, WV 25304						
Phone Number:	(304) 926-0495 Email: Scott.G.Mandirola@wv.gov	_				
Sum	Fiscal Note Summary marize in a clear and concise manner what impact this measure will have on costs and revenues of state government.					
No fiscal impacts on	state government are anticipated.	,				

Fiscal Note Detail

Show over-all effect in Item 1 and 2 and, in Item 3, give an explanation of Breakdown by fiscal year, including long-range effect.

FISCAL YEAR								
Effect of Proposal	Current Increase/Decrease (use "-")	Next Increase/Decrease (use "-")	Fiscal Year (Upon Full Implementation)					
1. Estimated Total Cost	0.00	0.00	0.00					
Personal Services	0.00	0.00	0.00					
Current Expenses	0.00	0.00	0.00					
Repairs & Alterations	0.00	0.00	0.00					
Assets	0.00	0.00	0.00					
Other	0.00	0.00	0.00					
2. Estimated Total Revenues	0.00	0.00	0.00					

Rule Title:	

Rule Title:	Requirements Govering V	Nator Quality	Standards 47CSR2
ituio i ino.	requirements covering v	valer Guanty	Glandards, 77 CC1 (2

3.	Explanation of above estimates (including long-range effect):
	Please include any increase or decrease in fees in your estimated total revenues

None anticipated		

MEMORANDUM

Please identify any areas of vagueness, technical defects, reasons the proposed rule would not have a fiscal impact, and/or any special issues not captured elsewhere on this form.

The emergency rule proposed would make a site-specific exception to the half-mile rule, that is currently in the rule and set to expire on September 1, 2010, permenent on the Ohio River main channel (between Brown's Island and the left descending bank) between river mile points 61.0 and 63.5. The agency's costs to implement this water quality standard will remain unchanged.

Date: March 3, 2010

Signature of Agency Head or Authorized Representative

TITLE 47 LEGISLATIVE RULE 2010 MAR -3 PM 4: 59 DEPARTMENT OF ENVIRONMENTAL PROTECTION WATER RESOURCES

SERIES 2 SECRETARY OF STATE REQUIREMENTS GOVERNING WATER QUALITY STANDARDS

§47-2-1. General.

- Scope. -- These rules establish requirements governing the discharge or deposit of sewage, industrial wastes and other wastes into the waters of the state and establish water quality standards for the waters of the State standing or flowing over the surface of the State. It is declared to be the public policy of the State of West Virginia to maintain reasonable standards of purity and quality of the water of the State consistent with (1) public health and public enjoyment thereof; (2) the propagation and protection of animal, bird, fish, and other aquatic and plant life; and (3) the expansion of employment opportunities, maintenance and expansion of agriculture and the provision of a permanent foundation for healthy industrial development. (See W. Va. Code §22-11-2.)
- 1.2. Authority. -- W. Va. Code §§22-11-4(a)(16); 22-11-7b.
 - 1.3. Filing Date. -- April 11, 2008.
 - 1.4. Effective Date. July 1, 2008.

§47-2-2. Definitions.

The following definitions in addition to those set forth in W. Va. Code §22-11-3, shall apply to these rules unless otherwise specified herein, or unless the context in which used clearly requires a different meaning:

- 2.1. "Conventional treatment" is the treatment of water as approved by the West Virginia Bureau for Public Health to assure that the water is safe for human consumption.
- 2.2. "Cool water lakes" are lakes managed by the West Virginia Division of Natural

Resources for cool water fisheries, with summer residence times greater than 14 days.

- 2.3. "Cumulative" means a pollutant which increases in concentration in an organism by successive additions at different times or in different ways (bio-accumulation).
- 2.4. "Designated uses" are those uses specified in water quality standards for each water or segment whether or not they are being attained. (See sections 6.2 6.6, herein)
- 2.5. "Dissolved metal" is operationally defined as that portion of metal which passes through a 0.45 micron filter.
- 2.6. "Existing uses" are those uses actually attained in a water on or after November 28, 1975, whether or not they are included in the water quality standards.
- 2.7. The "Federal Act" means the Clean Water Act (also known as the Federal Water Pollution Control Act) 33 U.S.C. §1251 1387.
- 2.8. "High quality waters" are those waters whose quality is equal to or better than the minimum levels necessary to achieve the national water quality goal uses.
- 2.9. "Intermittent streams" are streams which have no flow during sustained periods of no precipitation and which do not support aquatic life whose life history requires residence in flowing waters for a continuous period of at least six (6) months.
- 2.10. "Outstanding national resource waters" are those waters whose unique character, ecological or recreational value or

pristine nature constitutes a valuable national or State resource.

- 2.11. "Natural" or "naturally occurring" values or "natural temperature" shall mean for all of the waters of the state:
- 2.11.a. Those water quality values which exist unaffected by or unaffected as a consequence of any water use by any person; and
- 2.11.b. Those water quality values which exist unaffected by the discharge, or direct or indirect deposit of, any solid, liquid or gaseous substance from any point source or non-point source.
- 2.12. "Non-point source" shall mean any source other than a point source from which pollutants may reach the waters of the state.
- 2.13. "Persistent" shall mean a pollutant and its transformation products which under natural conditions degrade slowly in an aquatic environment.
- 2.14. "Point source" shall mean any discernible, confined and discrete conveyance, including, but not limited to, any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock or vessel or other floating craft, from which pollutants are or may be discharged. This term does not include agricultural stormwater discharges and return flows from irrigated agriculture.
- 2.15. "Representative important species of aquatic life" shall mean those species of aquatic life whose protection and propagation will assure the sustained presence of a balanced aquatic community. Such species are representative in the sense that maintenance of water quality criteria will assure both the natural completion of the species' life cycles and the overall protection and sustained propagation of the balanced aquatic community.
- 2.16. "Secretary" shall mean the Secretary of the Department of Environmental Protection or such other person to whom the Secretary has

- delegated authority or duties pursuant to W. Va. Code §§22-1-6 or 22-1-8.
- 2.17. The "State Act" or "State Law" shall mean the West Virginia Water Pollution Control Act, W. Va. Code §22-11-1 et seq.
- 2.18. "Total recoverable" refers to the digestion procedure for certain heavy metals as referenced in 40 CFR 136, as amended June 15, 1990 and March 26, 2007, Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act.
- 2.19. "Trout waters" are waters which sustain year-round trout populations. Excluded are those waters which receive annual stockings of trout but which do not support year-round trout populations.
- 2.20. "Water quality criteria" shall mean levels of parameters or stream conditions that are required to be maintained by these regulations. Criteria may be expressed as a constituent concentration, levels, or narrative statement, representing a quality of water that supports a designated use or uses.
- 2.21. "Water quality standards" means the combination of water uses to be protected and the water quality criteria to be maintained by these rules.
- 2.22. "Wetlands" are those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas.
- 2.23. "Wet weather streams" are streams that flow only in direct response to precipitation or whose channels are at all times above the water table.

§47-2-3. Conditions Not Allowable In State Waters.

3.1. Certain characteristics of sewage, industrial wastes and other wastes cause

pollution and are objectionable in all waters of the state. Therefore, the Secretary does hereby proclaim that the following general conditions are not to be allowed in any of the waters of the state.

- 3.2. No sewage, industrial wastes or other wastes present in any of the waters of the state shall cause therein or materially contribute to any of the following conditions thereof:
- 3.2.a. Distinctly visible floating or settleable solids, suspended solids, scum, foam or oily slicks;
- 3.2.b. Deposits or sludge banks on the bottom;
- 3.2.c. Odors in the vicinity of the waters;
- 3.2.d. Taste or odor that would adversely affect the designated uses of the affected waters;
- 3.2.e. Materials in concentrations which are harmful, hazardous or toxic to man, animal or aquatic life;

3.2.f. Distinctly visible color;

- 3.2.g. Concentrations of bacteria which may impair or interfere with the designated uses of the affected waters;
- 3.2.h. Requiring an unreasonable degree of treatment for the production of potable water by modern water treatment processes as commonly employed; and
- 3.2.i. Any other condition, including radiological exposure, which adversely alters the integrity of the waters of the State including wetlands; no significant adverse impact to the chemical, physical, hydrologic, or biological components of aquatic ecosystems shall be allowed.

§47-2-4. Antidegradation Policy.

- 4.1. It is the policy of the State of West Virginia that the waters of the state shall be maintained and protected as follows:
- 4.1.a. Tier 1 Protection. Existing water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected. Existing uses are those uses actually attained in a water on or after November 28, 1975, whether or not they are included as designated uses within these water quality standards.
- 4.1.b. Tier 2 Protection. The existing high quality waters of the state must be maintained at their existing high quality unless it determined after satisfaction of the intergovernmental coordination of the state's continuing planning process and opportunity for public comment and hearing that allowing lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. If limited degradation is allowed, it shall not result in injury or interference with existing stream water uses or in violation of state or federal water quality criteria that describe the base levels necessary to sustain the national water quality goal uses of protection and propagation of fish, shellfish and wildlife and recreating in and on the water.

In addition, the Secretary shall assure that all new and existing point sources shall achieve the highest established statutory and regulatory requirements applicable to them and shall assure the achievement of cost-effective and reasonable best management practices (BMPs) for non-point source control. If BMPs are demonstrated to be inadequate to reduce or minimize water quality impacts, the Secretary may require that more appropriate BMPs be developed and applied.

- 4.1.b.1. High quality waters are those waters meeting the definition at section 2.8 herein.
- 4.1.b.2. High quality waters may include but are not limited to the following:

4.1.b.2.A. Streams designated by the West Virginia Legislature under the West Virginia Natural Stream Preservation Act, pursuant to W. Va. Code §22-13-5; and

4.1.b.2.B. Streams listed in West Virginia High Quality Streams, Fifth Edition, prepared by the Wildlife Resources Division, Department of Natural Resources (1986).

4.1.b.2.C. Streams or stream segments which receive annual stockings of trout but which do not support year-round trout populations.

4.1.c. Tier 3 Protection. In all cases, waters which constitute an outstanding national resource shall be maintained and protected and improved where necessary. Outstanding national resource waters include, but are not limited to, all streams and rivers within the boundaries of Wilderness Areas designated by The Wilderness Act (16 U.S.C. §1131 et seq.) within the State, all Federally designated rivers under the "Wild and Scenic Rivers Act", 16 U.S.C. §1271 et seq.; all streams and other bodies of water in state parks which are high quality waters or naturally reproducing trout streams; waters in national parks and forests which are high quality waters or naturally reproducing trout streams; waters designated under the "National Parks and Recreation Act of 1978", as amended; and pursuant to subsection 7.1 of 60CSR5, those waters whose unique character, ecological or recreational value, or pristine nature constitutes a valuable national or state resource.

Additional waters may be nominated for inclusion in that category by any interested party or by the Secretary on his or her own initiative. To designate a nominated water as an outstanding national resource water, the Secretary shall follow the public notice and hearing provisions as provided in 46 C.S.R. 6.

4.1.d. All applicable requirements of section 316(a) of the Federal Act shall apply to modifications of the temperature water quality criteria provided for in these rules.

§47-2-5. Mixing Zones.

- 5.1. In the permit review and planning process or upon the request of a permit applicant or permittee, the Secretary may establish on a case-by-case basis an appropriate mixing zone.
- 5.2. The following guidelines and conditions are applicable to all mixing zones:
- 5.2.a. The Secretary will assign, on a case-by-case basis, definable geometric limits for mixing zones for a discharge or a pollutant or pollutants within a discharge. Applicable limits shall include, but may not be limited to, the linear distances from the point of discharge, surface area involvement, volume of receiving water, and shall take into account other nearby mixing zones. Mixing zones shall take into account the mixing conditions in the receiving stream (i.e: whether complete or incomplete mixing conditions exist). Mixing zones will not be allowed until applicable limits are assigned by the Secretary in accordance with this section.
- Concentrations of pollutants 5.2.b. which exceed the acute criteria for protection of aquatic life set forth in Appendix E, Table 1 shall not exist at any point within an assigned mixing zone or in the discharge itself unless a zone of initial dilution is assigned. A zone of initial dilution may be assigned on a case-bycase basis at the discretion of the Secretary. The zone of initial dilution is the area within the mixing zone where initial dilution of the effluent with the receiving water occurs, and where the concentration of the effluent will be its greatest in the water column. Where a zone of initial dilution is assigned by the Secretary, the size of the zone shall be determined using one of the four alternatives outlined in section 4.3.3 of US EPA's Technical Support Document for Water Ouality-based Toxics Control (EPA/505/2-90-PB91-127415, March Concentrations of pollutants shall not exceed the acute criteria at the edge of the assigned zone of Chronic criteria for the initial dilution. protection of aquatic life may be exceeded within the mixing zone but shall be met at the edge of the assigned mixing zone.

- Concentrations of pollutants 5.2.c. which exceed the criteria for the protection of human health set forth in Appendix E, Table 1 shall not be allowed at any point unless a mixing zone has been assigned by the Secretary after consultation with the Commissioner of the West Virginia Bureau for Public Health. Human health criteria may be exceeded within an assigned mixing zone, but shall be met at the edge of the assigned mixing zone. Mixing zones for human health criteria shall be sized to prevent significant human health risks and shall be developed using reasonable assumptions about exposure pathways. In assessing the potential human health risks of establishing a mixing zone upstream from a drinking water intake, the Secretary shall consider the cumulative effects of multiple discharges and mixing zones on the drinking water intake. No mixing zone for human health criteria shall be established on a stream which has a seven (7) day, ten (10) year return frequency of 5 cfs or less.
- 5.2.d. Mixing zones, including zones of initial dilution, shall not interfere with fish spawning or nursery areas or fish migration routes; shall not overlap public water supply intakes or bathing areas; cause lethality to or preclude the free passage of fish or other aquatic life; nor harm any threatened or endangered species, as listed in the Federal Endangered Species Act, 15 U.S.C. §1531 et seq.
- 5.2.e. The mixing zone shall not exceed one-third (1/3) of the width of the receiving stream, and in no case shall the mixing zone exceed one-half (1/2) of the cross-sectional area of the receiving stream.
- 5.2.f. In lakes and other surface impoundments, the volume of a mixing zone shall not affect in excess of ten (10) percent of the volume of that portion of the receiving waters available for mixing.
- 5.2.g. A mixing zone shall be limited to an area or volume which will not adversely alter the existing or designated uses of the receiving water, nor be so large as to adversely affect the integrity of the water.

5.2.h. Mixing zones shall not:

- 5.2.h.1. Be used for, or considered as, a substitute for technology-based requirements of the Act and other applicable state and federal laws.
- 5.2.h.2. Extend downstream at any time a distance more than five times the width of the receiving watercourse at the point of discharge.
- 5.2.h.3. Cause or contribute to any of the conditions prohibited in section 3, herein.
- 5.2.h.4. Be granted where instream waste concentration of a discharge is greater than 80%.
 - 5.2.h.5. Overlap one another.
- 5.2.h.6. Overlap any 1/2 mile zone described in section 7.2.a.2 herein.
- 5.2.i. In the case of thermal discharges, a successful demonstration conducted under section 316(a) of the Act shall constitute compliance with all provisions of this section.
- 5.2.j. The Secretary may waive the requirements of subsections 5.2.e and 5.2.h.2 above if a discharger provides an acceptable demonstration of:
- 5.2.j.1. Information defining the actual boundaries of the mixing zone in question; and
- 5.2.j.2. Information and data proving no violation of subsections 5.2.d and 5.2.g above by the mixing zone in question.
- 5.2.k. Upon implementation of a mixing zone in a permit, the permittee shall provide documentation that demonstrates to the satisfaction of the Secretary that the mixing zone is in compliance with the provisions outlined in subsections 5.2.b, 5.2.c, 5.2.e, and 5.2.h.2, herein.
- 5.2.1. In order to facilitate a determination or assessment of a mixing zone

pursuant to this section, the Secretary may require a permit applicant or permittee to submit such information as deemed necessary.

§47-2-6. Water Use Categories.

- 6.1. These rules establish general Water Use Categories and Water Quality Standards for the waters of the State. Unless otherwise designated by these rules, at a minimum all waters of the State are designated for the Propagation and Maintenance of Fish and Other Aquatic Life (Category B) and for Water Contact Recreation (Category C) consistent with Federal Act goals. Incidental utilization for whatever purpose may or may not constitute a justification for assignment of a water use category to a particular stream segment.
- 6.1.a. Waste assimilation and transport are not recognized as designated uses. The classification of the waters must take into consideration the use and value of water for public water supplies, protection and propagation of fish, shellfish and wildlife, recreation in and on the water, agricultural, industrial and other purposes including navigation.

Subcategories of a use may be adopted and appropriate criteria set to reflect varying needs of such subcategories of uses, for example to differentiate between trout water and other waters.

6.1.b. At a minimum, uses are deemed attainable if they can be achieved by the imposition of effluent limits required under section 301(b) and section 306 of the Federal Act and use of cost-effective and reasonable best management practices for non-point source control. Seasonal uses may be adopted as an alternative to reclassifying a water or segment thereof to uses requiring less stringent water quality criteria. If seasonal uses are adopted, water quality criteria will be adjusted to reflect the seasonal uses; however, such criteria shall not preclude the attainment and maintenance of a more protective use in another season. A designated use which is not an existing use may be removed, or subcategories of a use may be established if it can be demonstrated that

attaining the designated use is not feasible because:

- 6.1.b.1. Application of effluent limitations for existing sources more stringent than those required pursuant to section 301 (b) and section 306 of the Federal Act in order to attain the existing designated use would result in substantial and widespread adverse economic and social impact; or
- 6.1.b.2. Naturally-occurring pollutant concentrations prevent the attainment of the use; or
- 6.1.b.3. Natural, ephemeral, intermittent or low flow conditions of water levels prevent the attainment of the use, unless these conditions may be compensated for by the discharge of sufficient volume of effluent discharges to enable uses to be met; or
- 6.1.b.4. Human-caused conditions or sources of pollution prevent the attainment of the use and cannot be remedied or would cause more environmental damage to correct than to leave in place; or
- 6.1.b.5. Dams, diversions or other types of hydrologic modifications preclude the attainment of the use, and it is not feasible to restore the water to its original condition or to operate such modification in a way that would result in the attainment of the use; or
- 6.1.b.6. Physical conditions related to the natural features of the water, such as the lack of a proper substrate, cover, flow, depth, pools, riffles, and the like, unrelated to water quality, preclude attainment of aquatic life protection uses.
- 6.1.c. The State shall take into consideration the quality of downstream waters and shall assure that its water quality standards provide for the attainment of the water quality standards of downstream waters.
- 6.1.d. In establishing a less restrictive use or uses, or subcategory of use or uses, and the water quality criteria based upon such uses, the Secretary shall follow the requirements for

revision of water quality standards as required by W. Va. Code §22-11-7b and section 303 of the Federal Act and the regulations thereunder. Any revision of water quality standards shall be made with the concurrence of EPA. The Secretary's administrative procedural regulations for applying for less restrictive uses or criteria shall be followed.

- 6.2. Category A -- Water Supply, Public. -- This category is used to describe waters which, after conventional treatment, are used for human consumption. This category includes streams on which the following are located:
- 6.2.a. All community domestic water supply systems;
- 6.2.b. All non-community domestic water supply systems, (i.e. hospitals, schools, etc.);
- 6.2.c. All private domestic water systems;
- 6.2.d. All other surface water intakes where the water is used for human consumption. (See Appendix B for partial listing of Category A waters; see section 7.2.a.2, herein for additional requirements for Category A waters.) The manganese human health criterion shall only apply within the five-mile zone immediately upstream above a known public or private water supply used for human consumption.
- 6.3. Category B -- Propagation and maintenance of fish and other aquatic life. --

This category includes:

- 6.3.a. Category B1 -- Warm water fishery streams. -- Streams or stream segments which contain populations composed of all warm water aquatic life.
- 6.3.b. Category B2 -- Trout Waters. -- As defined in section 2.19, herein (See Appendix A for a representative list.)
- 6.3.c. Category B4 -- Wetlands. -- As defined in section 2.22, herein; certain numeric

- stream criteria may not be appropriate for application to wetlands (see Appendix E, Table 1).
- 6.4. Category C -- Water contact recreation. -- This category includes swimming, fishing, water skiing and certain types of pleasure boating such as sailing in very small craft and outboard motor boats. (See Appendix D for a representative list of category C waters.)
- 6.5. Category D. -- Agriculture and wildlife uses.
- 6.5.a. Category D1 -- Irrigation. -- This category includes all stream segments used for irrigation.
- 6.5.b. Category D2 Livestock watering. This category includes all stream segments used for livestock watering.
- 6.5.c. Category D3 Wildlife. This category includes all stream segments and wetlands used by wildlife.
- 6.6. Category E -- Water supply industrial, water transport, cooling and power. -- This category includes cooling water, industrial water supply, power production, commercial and pleasure vessel activity, except those small craft included in Category C.
- 6.6.a. Category E1 -- Water Transport. -- This category includes all stream segments modified for water transport and having permanently maintained navigation aides.
- 6.6.b. Category E2 -- Cooling Water. -- This category includes all stream segments having one (1) or more users for industrial cooling.
- 6.6.c. Category E3 -- Power production. -- This category includes all stream segments extending from a point 500 feet upstream from the intake to a point one half (1/2) mile below the wastewater discharge point. (See Appendix C for representative list.)

6.6.d. Category E4 -- Industrial. -- This category is used to describe all stream segments with one (1) or more industrial users. It does not include water for cooling.

§47-2-7. West Virginia Waters.

- 7.1. Major River Basins and their Alphanumeric System. All streams and their tributaries in West Virginia shall be individually identified using an alphanumeric system as identified in the "Key to West Virginia Stream Systems and Major Tributaries" (1956) as published by the Conservation Commission of West Virginia and revised by the West Virginia Department of Natural Resources, Division of Wildlife (1985).
- 7.1.a. J James River Basin. All tributaries to the West Virginia Virginia State line.
- 7.1.b. P Potomac River Basin. All tributaries of the main stem of the Potomac River to the West Virginia Maryland Virginia State line to the confluence of the North Branch and the South Branch of the Potomac River and all tributaries arising in West Virginia excluding the major tributaries hereinafter designated:
- 7.1.b.1. S Shenandoah River and all its tributaries arising in West Virginia to the West Virginia Virginia State line.
- 7.1.b.2. PC Cacapon River and all its tributaries.
- 7.1.b.3. PSB South Branch and all its tributaries.
- 7.1.b.4. PNB North Branch and all tributaries to the North Branch arising in West Virginia.
- 7.1.c. M Monongahela River Basin. The Monongahela River Basin main stem and all its tributaries excluding the following major tributaries which are designated as follows:
- 7.1.c.1. MC Cheat River and all its tributaries except those listed below:

- 7.1.c.1.A. MCB Blackwater River and all its tributaries.
- 7.1.c.2. MW West Fork River and all its tributaries.
- 7.1.c.3. MT Tygart River and all its tributaries except those listed below:
- 7.1.c.3.A. MTB Buckhannon River and all its tributaries.
- 7.1.c.3.B. MTM Middle Fork River and all its tributaries.
- 7.1.c.4. MY Youghigheny River and all its tributaries to the West Virginia Maryland State line.
- 7.1.d. O Zone 1 Ohio River Main Stem. The main stem of the Ohio River from the Ohio Pennsylvania West Virginia state line to the Ohio Kentucky West Virginia State line.
- 7.1.e. O Zone 2 Ohio River Tributaries. All tributaries of the Ohio River excluding the following major tributaries:
- 7.1.e.1. LK Little Kanawha River. The Little Kanawha River and all its tributaries excluding the following major tributary which is designated as follows:
- 7.1.e.1.A. LKH Hughes River and all its tributaries.
- 7.1.e.2. K Kanawha River Zone 1. The main stem of the Kanawha River from mile point 0, at its confluence with the Ohio River, to mile point 72 near Diamond, West Virginia.
- 7.1.e.3. K Kanawha River Zone 2. The main stem of the Kanawha River from mile point 72 near Diamond, West Virginia and all its tributaries from mile point 0 to the headwaters excluding the following major tributaries which are designated as follows:
- 7.1.e.3.A. KP Pocatalico River and all its tributaries.

7.1.e.3.B. KC - Coal River and all its tributaries.

7.1.e.3.C. KE - Elk River and all its tributaries.

7.1.e.3.D. KG - Gauley River. The Gauley River and all its tributaries excluding the following major tributaries which are designated as follows:

7.1.e.3.D.1. KG-19 Meadow River and all its tributaries.

KG-34 7.1.e.3.D.2. Cherry River and all its tributaries.

7.1.e.3.D.3. **KGC** Cranberry River and all its tributaries.

7.1.e.3.D.4. KGW Williams River and all its tributaries.

7.1.e.3.E. KN - New River. The New River from its confluence with the Gauley River to the Virginia - West Virginia State line and all tributaries excluding the following major tributaries which are designated as follows:

7.1.e.3.E.1. KNG Greenbrier River and all its tributaries.

7.1.e.3.E.2. KNB Bluestone River and all its tributaries.

7.1.e.3.E.3. KN-60 - East River and all its tributaries.

7.1.e.3.E.4. K(L)-81-(1) -Bluestone Lake.

7.1.e.4. OG - Guyandotte River. The Guyandotte River and all its tributaries excluding the following major tributary which is designated as follows:

7.1.e.4.1. OGM - Mud River and all its tributaries.

7.1.e.5. BS - Big Sandy River. The Big Sandy River to the Kentucky - Virginia -West Virginia State lines and all its tributaries arising in West Virginia excluding the following major tributary which is designated as follows:

7.1.e.5.1 BST - Tug Fork and all its tributaries.

7.2. Applicability of Water Quality Standards. The following shall apply at all times unless a specific exception is granted in this section:

7.2.a. Water Use Categories as described in section 6, herein.

7.2.a.1. Based on meeting those definitions, tributaries or stream Section 6 segments may be classified for one or more Water Use Categories. When more than one use exists, they shall be protected by criteria for the use category requiring the most stringent protection.

Each segment extending 7.2.a.2. upstream from the intake of a water supply public (Water Use Category A), for a distance of one half (1/2) mile or to the headwater, must be protected by prohibiting the discharge of any pollutants in excess of the concentrations designated for this Water Use Category in section 8, herein. In addition, within that one half (1/2) mile zone, the Secretary may establish for any discharge, effluent limitations for the protection of human health that require additional removal of pollutants than would otherwise be provided by this rule. watershed is not significantly larger than this zone above the intake, the water supply section may include the entire upstream watershed to its headwaters.) Until September 1, 2010, or until action by the Secretary to revise this provision, whichever comes first, The one-half (1/2) mile zone described in this section shall not apply to the Ohio River main channel (between Brown's Island and the left descending bank) between river mile points 61.0 and 63.5. All mixing zone regulations found in section 5 of this rule will apply except 47 CSR 2 §5.2.h.6. Whether a mixing zone is appropriate, and the proper size of such zones, would need to

be considered on a site-specific basis in accordance with the EPA approved West Virginia mixing zone regulations in 47 CSR 2 §5. for the Category A criterion for iron as set forth in §8 herein. Weirton Steel Corporation shall conduct monthly monitoring of the treated water at its drinking water plant-for-iron-and submit the results of such monitoring to the West Virginia Bureau for Public Health and the Office of Water Resources of the West Virginia Department of Environmental Protection. In addition, Weirton Steel Corporation shall submit a written report regarding the status of its drinking water plant and the issues pertaining thereto to the Secretary on or before March 1. 2007.

7.2.b. In the absence of any special application or contrary provision, water quality standards shall apply at all times when flows are equal to or greater than the minimum mean seven (7) consecutive day drought flow with a ten (10) year return frequency (7Q10). NOTE: With the exception of section 7.2.c.5 listed herein exceptions do not apply to trout waters nor to the requirements of section 3, herein.

7.2.c. Exceptions: Numeric water quality standards shall not apply: (See section 7.2.d, herein, for site-specific revisions)

7.2.c.1. When the flow is less than 7Q10;

7.2.c.2. In wet weather streams (or intermittent streams, when they are dry or have no measurable flow): Provided, that the existing and designated uses of downstream waters are not adversely affected;

7.2.c.3. In any assigned zone of initial dilution of any mixing zone where a zone of initial dilution is required by section 5.2.b herein, or in any assigned mixing zone for human health criteria or aquatic life criteria for which a zone of initial dilution is not assigned; In zones of initial dilution and certain mixing zones: Provided, That all requirements described in section 5 herein shall apply to all zones of initial dilution and all mixing zones;

Where, on the basis of 7.2.c.4. natural conditions, the Secretary has established a site-specific aquatic life water quality criterion that modifies a water quality criterion set out in Appendix E, Table 1 of this rule. Where a natural condition of a water is demonstrated to be of lower quality than a water quality criterion for the use classes and subclasses in section 6 of this rule, the Secretary, in his or her discretion. may establish a site-specific water quality criterion for aquatic life. This alternate criterion may only serve as the chronic criterion established for that parameter. This alternate criterion must be met at end of pipe. Where the Secretary decides to establish a site-specific water quality criterion for aquatic life, the natural condition constitutes the applicable water quality criterion. A site-specific criterion for natural conditions may only be established through the legislative rulemaking process in accordance with W. Va. Code §29A-3-1 et seq. and must satisfy the public participation requirements set forth at 40 C.F.R. 131.20 and 40 C.F.R. Part 25. Site-specific criteria for natural conditions may be established only for aquatic life criteria. A public notice, hearing and comment period is required before sitespecific criteria for natural conditions are established.

Upon application or on its own initiative, the Secretary will determine whether a natural condition of a water should be approved as a site-specific water quality criterion. Before he or she approves a site-specific water quality criterion for a natural condition, the Secretary must find that the natural condition will fully protect existing and designated uses and ensure the protection of aquatic life. If a natural condition of a water varies with time, the natural condition will be determined to be the actual natural condition of the water measured prior to or concurrent with discharge or operation. The Secretary will, in his or her discretion, determine a natural condition for one or more seasonal or shorter periods to reflect variable ambient conditions; and require additional or continuing monitoring of natural conditions.

An application for a site-specific criterion to be established on the basis of natural

conditions shall be filed with the Secretary and shall include the following information:

7.2.c.4.A. A U.S.G.S. 7.5 minute map showing the stream segment affected and showing all existing discharge points and proposed discharge point;

7.2.c.4.B. The alphanumeric code of the affected stream, if known;

7.2.c.4.C. Water quality data for the stream or stream segment. Where adequate data are unavailable, additional studies may be required by the Secretary;

7.2.c.4.D. General land uses (e.g. mining, agricultural, recreation, residential, commercial, industrial, etc.) as well as specific land uses adjacent to the waters for the affected segment or stream;

7.2.c.4.E. The existing and designated uses of the receiving waters into which the segment in question discharges and the location where those downstream uses begin to occur;

7.2.c.4.F. General physical characteristics of the stream segment, including, but not limited to width, depth, bottom composition and slope;

7.2.c.4.G. Conclusive information and data of the source of the natural condition that causes the stream to exceed the water quality standard for the criterion at issue.

7.2.c.4.H. The average flow rate in the segment and the amount of flow at a designated control point and a statement regarding whether the flow of the stream is ephemeral, intermittent or perennial;

7.2.c.4.I. An assessment of aquatic life in the stream or stream segment in question and in the adjacent upstream and downstream segments; and

7.2.c.4.J. Any additional information or data that the Secretary deems necessary to make a decision on the application.

7.2.c.5. For the upper Blackwater River from the mouth of Yellow Creek to a point 5.1 miles upstream, when flow is less than 7Q10. Naturally occurring values for Dissolved Oxygen as established by data collected by the dischargers within this reach and reviewed by the Secretary shall be the applicable criteria.

7.2.d. Site-specific applicability of water use categories and water quality criteria - State-wide water quality standards shall apply except where site-specific numeric criteria, variances or use removals have been approved following application and hearing, as provided in 46 C.S.R. 6. (See section 8.4 and section 8.5, herein) The following are approved site-specific criteria, variances and use reclassifications:

7.2.d.1. James River - (Reserved)

7.2.d.2. Potomac River

7.2.d.2.1. A site-specific numeric criterion for aluminum, not to exceed 500 ug/l, shall apply to the section of Opequon Creek from Turkey Run to the Potomac River.

7.2.d.3. Shenandoah River - (Reserved)

7.2.d.4. Cacapon River - (Reserved)

7.2.d.5. South Branch - (Reserved)

7.2.d.6. North Branch - (Reserved)

7.2.d.7. Monongahela River

7.2.d.7.1. Flow in the main stem of the Monongahela River, as regulated by the Tygart Reservoir, operated by the U. S. Army Corps of Engineers, is based on a minimum flow of 345 cfs at Lock and Dam No. 8, river mile point 90.8. This exception does not apply to tributaries of the Monongahela River.

7.2.d.8. Cheat River

7.2.d.8.1. In the unnamed tributary of Daugherty Run, approximately one mile upstream of Daugherty Run's confluence

with the Cheat River, a site-specific numeric criterion for iron of 3.5 mg/l shall apply and the following frequency and duration requirements shall apply to the chronic numeric criterion for selenium (5ug/l): the four-day average concentration shall not be exceeded more than three times every three years (36 months), on average. Further, the following site-specific numeric criteria shall apply to Fly Ash Run of Daugherty Run: acute numeric criterion for aluminum: 888.5 ug/l and manganese: 5 mg/l.

7.2.d.9. Blackwater River - (Reserved)

7.2.d.10. West Fork River - (Reserved)

7.2.d.11. Tygart River - (Reserved)

7.2.d.12. Buckhannon River - (Reserved)

7.2.d.13. Middle Fork River - (Reserved)

7.2.d.14. Youghiogheny River - (Reserved)

7.2.d.15. Ohio River Main Stem - (Reserved)

7.2.d.16. Ohio River Tributaries.

7.2.d.16.1. Site-specific numeric criteria shall apply to the stretch of Conners Run (0-77-A), a tributary of Fish Creek, from its mouth to the discharge from Conner Run impoundment, which shall not have the Water Use Category A and may contain selenium not to exceed 62 ug/1; and iron not to exceed 3.5 mg/1 as a monthly average and 7 mg/1 as a daily maximum.

7.2.d.16.2. A socio-economic variance shall apply to that segment of Harmon Creek (0-97) from its confluence with the Ohio River to a point 2.2 miles upstream, which shall not have water use Category A designation, and which shall have the following instream criteria: Lead 14 ug/l, Daily Maximum, Temperature 100 degree F (monitored per Footnote 12 of the

permit); Iron 4.0 mg/l, monthly average and 8.0 mg/l Daily Maximum (monitored per Footnote 12 of the permit). Weirton Steel Corporation shall continue to submit to the Secretary, on an annual basis summary reports on the water quality of the discharge from Outlet 004 and the efforts made by Weirton Steel Corporation during the previous year to improve the quality of the discharge. These exceptions shall be in effect until action by the Secretary to revise the exceptions or until July 1, 2009, whichever comes first.

7.2.d.17. Little Kanawha River - (Reserved)

7.2.d.18. Hughes River (Reserved)

7.2.d.19. Kanawha River Zone 1 - Main Stem

7.2.d.19.1. For the Kanawha River main stem, Zone 1, Water Use Category A shall not apply; and

7.2.d.19.2. The minimum flow shall be 1,960 cfs at the Charleston gauge.

7.2.d.19.3. A variance pursuant to 46 CSR 6, Section 5.1, based on naturally occurring pollutant concentrations, shall apply to Union Carbide Corporation's discharge to Ward Hollow of Davis Creek, which shall have the instream criteria for chlorides of 310 mg/l for Category A and C waters and for Category B1 (chronic aquatic life protection). This exception shall be in effect until action by the Secretary to revise the exception or until July 1, 2010, whichever comes first.

7.2.d.20. Kanawha River Zone 2 and Tributaries.

7.2.d.20.1. For the main stem of the Kanawha River only, the minimum flow shall be 1,896 cfs at mile point 72.

7.2.d.20.2. The stretch between the mouth of Little Scary Creek (K-31) and the Little Scary impoundment shall not have Water Use Category A. The following site-specific numeric criteria shall apply to that section: selenium not to exceed 62 ug/1 and copper not to exceed 105 ug/1 as a daily maximum nor 49 ug/1 as a 4-day average.

7.2.d.21. Pocatalico River - (Reserved)

7.2.d.22. Coal River - (Reserved)

7.2.d.23. Elk River - (Reserved)

7.2.d.24. Gauley River - (Reserved)

7.2.d.25. Meadow River (Reserved)

7.2.d.26. Cherry River - (Reserved)

7.2.d.27. Cranberry River (Reserved)

7.2.d.28. Williams River (Reserved)

7.2.d.29. New River - (Reserved)

7.2.d.30. Greenbrier River (Reserved)

7.2.d.31. Bluestone River (Reserved)

7.2.d.32. Bluestone Lake (Reserved)

7.2.d.33. East River - (Reserved)

7.2.d.34. Guyandotte River -

7.2.d.34.1. Pats Branch from its confluence with the Guyandotte River to a point 1000 feet upstream shall not have Water Use Category A and Category D1 designation.

7.2.d.35. Mud River - (Reserved)

7.2.d.36. Big Sandy River - (Reserved)

7.2.d.37. Tug Fork River - (Reserved)

§47-2-8. Specific Water Quality Criteria.

- 8.1. Charts of specific water quality criteria are included in Appendix E, Table 1.
- 8.1.a. Specific state (i.e. total, total recoverable, dissolved, valence, etc.) of any parameter to be analyzed shall follow 40 CFR 136, Guidelines Establishing Test Procedures for Analysis of Pollutants Under the Clean Water Act, as amended, June 15, 1990 and March 26, 2007. (See also 47 C.S.R. 10, section 7.3 National Pollutant Discharge Elimination System (NPDES) Program.)
- 8.1.b. Compliance with aquatic life water quality criteria expressed as dissolved metal shall be determined based on dissolved metals concentrations.
- 8.1.b.1. The aquatic life criteria for all metals listed in Appendix E, Table 2 shall be converted to a dissolved concentration by multiplying each numerical value or criterion equation from Appendix E, Table 1 by the appropriate conversion factor (CF) from Appendix E, Table 2.
- 8.1.b.2. Permit limits based on dissolved metal water quality criteria shall be prepared in accordance with the U.S. EPA document "The Metals Translator: Guidance For Calculating A Total Recoverable Permit Limit From A Dissolved Criterion, EPA 823-B-96-007 June 1996.
- 8.1.b.3. NPDES permit applicants may petition the Secretary to develop a site-specific translator consistent with the provisions in this section. The Secretary may, on a case-by-case basis require an applicant applying for a translator to conduct appropriate sediment monitoring through SEM/AVS ratio, bioassay or other approved methods to evaluate effluent limits that prevent toxicity to aquatic life.
- 8.1.c. An "X" or numerical value in the use columns of Appendix E, Table 1 shall represent the applicable criteria.

8.1.d. Charts of water quality criteria in Appendix E, Table 1 shall be applied in accordance with major stream and use applications, sections 6 and 7, herein.

8.2. Criteria for Toxicants

8.2.a. Toxicants which are carcinogenic have human health criteria (Water Use Categories A and C) based upon an estimated risk level of one additional cancer case per one million persons (10⁻⁶) and are indicated in Appendix E, Table 1 with an endnote (b).

8.2.b. A final determination on the critical design flow for carcinogens is not made in this rule, in order to permit further review and study of that issue. Following the conclusion of such review and study, the Legislature may again take up the authorization of this rule for purposes of addressing the critical design flow for carcinogens: Provided, That until such time as the review and study of the issue is concluded or until such time as the Legislature may again take up the authorization of this rule, the regulatory requirements for determining effluent limits for carcinogens shall remain as they were on the date this rule was proposed.

8.3. Criteria for Nutrients in Lakes

8.3.a. This subsection establishes nutrient criteria designed to protect Water Use Categories B and C. The following cool water nutrient criteria shall apply to cool water lakes. (See Appendix F for a representative list.) The following warm water nutrient criteria shall apply to all other lakes with a summer residence time greater than 14 days.

8.3.b. Total phosphorus shall not exceed 50 μ g/l for warm water lakes and 30 μ g/l for cool water lakes based on an average of four or more samples collected during the period May 1–October 31. In lieu of such sampling, impairment may be evidenced at any time by noncompliance with section 3.2, as determined by the Secretary. Chlorophyll-a shall not exceed 30 μ g/l for warm water lakes and 15 μ g/l for cool water lakes based on an average of four or more samples collected during the period May 1–October 31. In lieu of such sampling,

impairment may be evidenced at any time by noncompliance with section 3.2, as determined by the Secretary.

8.4. Variances from Specific Water Quality Criteria. A variance from numeric criteria may be granted to a discharger if it can be demonstrated that the conditions outlined in paragraphs 6.1.b.1 through 6.1.b.6, herein, limit the attainment of one or more specific water quality criteria. Variances shall apply only to the discharger to whom they are granted and shall be reviewed by the Secretary at least every three years. In granting a variance, the requirements for revision of water quality standards in 46 CSR 6 shall be followed.

8.5. Site-specific numeric criteria. The Secretary may establish numeric criteria different from those set forth in Appendix E, Table 1 for a stream or stream segment upon a demonstration that existing numeric criteria are either over-protective or under-protective of the aquatic life residing in the stream or stream segment. A site-specific numeric criterion will be established only where the numeric criterion will be fully protective of the aquatic life and the existing and designated uses in the stream or stream segment. The site-specific numeric criterion may be established by conducting a Water Effect Ratio study pursuant to the procedures outlined in US EPA's "Interim Guidance on the Determination and Use of Water-Effect Ratios for Metals" (February 1994); other methods may be used with prior approval by the Secretary. In adopting sitespecific numeric criteria, the requirements for revision of water quality standards set forth in 46 CSR 6 shall be followed.

§47-2-9. Establishment Of Safe Concentration Values.

When a specific water quality standard has not been established by these rules and there is a discharge or proposed discharge into waters of the State, the use of which has been designated a Category B1, B2, B3 or B4, such discharge may be regulated by the Secretary where necessary to protect State waters through establishment of a safe concentration value as follows:

- 9.1. Establishment of a safe concentration value shall be based upon data obtained from relevant aquatic field studies, standard bioassay test data which exists in substantial available scientific literature, or data obtained from specific tests utilizing one (1) or more representative important species of aquatic life designated on a case-by-case basis by the Secretary and conducted in a water environment which is equal to or closely approximates that of the natural quality of the receiving waters.
- 9.2. In those cases where it has been determined that there is insufficient available data to establish a safe concentration value for a pollutant, the safe concentration value shall be determined by applying the appropriate application factor as set forth below to the 96-hour LC 50 value. Except where the Secretary determines, based upon substantial available scientific data that an alternate application factor exists for a pollutant, the following appropriate application factors shall be used in the determination of safe concentration values:
- 9.2.a. Concentrations of pollutants or combinations of pollutants that are not persistent and not cumulative shall not exceed 0.10 (1/10) of the 96-hour LC 50.
- 9.2.b. Concentrations of pollutants or combinations of pollutants that are persistent or cumulative shall not exceed 0.01 (1/100) of the 96-hour LC 50.
- 9.3. Persons seeking issuance of a permit pursuant to these rules authorizing the discharge of a pollutant for which a safe concentration value is to be established using special bioassay tests pursuant to subsection 9.1 of this section shall perform such testing as approved by the Secretary and shall submit all of the following in writing to the Secretary:
- 9.3.a. A plan proposing the bioassay testing to be performed.
- 9.3.b. Such periodic progress reports of the testing as may be required by the Secretary.
- 9.3.c. A report of the completed results of such testing including, but not limited to, all

- data obtained during the course of testing, and all calculations made in the recording, collection, interpretation and evaluation of such data
- 9.4. Bioassay testing shall be conducted in accordance with methodologies outlined in the following documents: U.S. EPA Office of Research and Development Series Publication, Methods for Measuring the Acute Toxicity (EPA/600/4-90/027F, August 1993, 4th Edition) or Short Term Methods for Estimating Chronic Toxicity of Effluents and Receiving Waters to Organisms (EPA/600/4-89/001), Freshwater March 1989; Standard Methods for the Examination of Water and Wastewater (18th Edition); or ASTM Practice E 729-88 for Conducting Acute Toxicity Tests with Fishes, **Amphibians** Macroinvertebrates and published in Volume 11.04 of the 1988 Annual Book of ASTM Standards. Test waters shall be reconstituted according to recommendations and methodologies specified in the previously cited references or methodologies approved in writing by the Secretary.

APPENDIX A CATEGORY B-2 - TROUT WATERS

This list contains known trout waters and is not intended to exclude any waters which meet the definition in Section 2.19.

<u>Stream</u>	roe South Fork Potts Creek		rson Town Run				•	' Tillance Creek	gan Meadow Branch	rson Flowing Springs Run (Above Halltown)	" Cattail Run	' Evitt's Run	' Big Bullskin Run	" Long Marsh Run	Hampshire Cold Stream	Edwards Run and Impoundment	Dillons Run		Camp Branch	" Lower Cove Run	" Moores Run	' North River (Above Rio)	1 Weiter Dun
River Basin County	James River J Monroe	Potomac River	P Jefferson	r P Berkeley	ď	Q .	Q.	ď	P Morgan	Jeff		PS SP	" PS	PS A	PC Ham	PC	PC .	PC Hardy	PC .		PC	PC	, Jd

Trout Run Trout Pond (Impoundment) Warden Lake (Impoundment) Rock Cliff Lake (Impoundment)	Mill Creek Mill Run Dumpling Creek North Fork South Branch North Fork Lunice Creek South Fork Lunice Creek South Mill Creek (Above Hiser) Spring Run Hawes Run (Impoundment) Little Fork South Branch (Above North Fork)	Senena Creek Laurel Fork Big Run North Fork Patterson Creek Fort Ashby (Impoundment) New Creek New Creek Mill Creek (Above Markwood)	Whiteday Creek (Above Smithtown) Morgan Run Coopers Rock (Impoundment) Blaney Hollow Laurel Run Elsey Run Saltlick Creek Buffalo Creek
= = =	Hampshire " Hardy Grant-Pendleton Grant " " " Pendleton " "	Pendleton " Mineral " " " "	Monongalia-Marion Monongalia " Preston " "
PC PC PC	PSB	Potomac River PSB PSB PSB PNB PNB PNB PNB PNB PNB PNB PNB	MC WC WC WC

Wolf Creek Clover Run Elklick Run Horseshoe Run Maxwell Run Red Creek Slip Hill Mill Branch Thomas Park (Impoundment) Blackwater River (Above Davis) Blackwater River (Below Davis) Camp Five Run Dry Fork (Above Otter Creek) Glady Fork Laurel Fork Gandy Creek (Above Whitmer) East Fork Glady Fork (Above C & P Compressor	Shavers Fork (Above Little Black Fork) Three Spring Run Spruce Knob Lake (Impoundment) Dog Run (Pond) Stonecoal Brushy Fork (Above Valley Furnace) Teter Creek Lake (Impoundment) Mill Run Tygart Lake Tailwaters (Above Route 119 Bridge) Roaring Creek (Above Little Lick Branch) Tygart River (Above Huttonsville) Elkwater Fork
Tucker " " " Randolph " "	Randolph " Harrison Lewis Barbour " " Taylor-Barbour Preston Randolph "
WC C C C C C W W C C C C C C C C C C C	MC MC MW MW MT MT MT MT MT MT MT

Monongahela River

MT

Upshur-Randolph-Lewis Right Fork Buckhannon River Upshur Buckhannon River (Above Beans Mill) MTB MTB

Big Run

Randolph

Left Fork-Right Fork Little Kanawha River Little Kanawha River (Above Wildcat) Sutton Lake Tailwaters (Above Route 38/5 Summersville Tailwaters (Above Collison Gauley River (Above Moust Coal Tipple) Summersville Reservoir (Impoundment) Elk River (Above Webster Springs) Middle Fork River (Above Cassity) Big Clear Creek Little Clear Creek and Laurel Run Stephens Lake (Impoundment) Right Fork Middle Fork River Marsh Fork (Above Sundial) Left Fork Holly River Left Fork Right Fork Sutton Reservoir Hominy Creek Anglins Creek French Creek Glade Creek Sugar Creek Rhine Creek Laurel Fork Deer Creek Desert Fork Back Fork Fall Run Bridge) Creek) Randolph-Webster Upshur-Randolph Upshur Upshur-Lewis Greenbrier Nicholas Randolph Nicholas Nicholas Fayette Braxton Raleigh " Webster Preston Upshur Little Kanawha River Kanawha River MTM MTB MTB MIN MY KG KG KG KG KG KG KC KC KG KG K K KK

Meadow Creek Wolf Creek Cherry River Laurel Creek North Fork Cherry River Summit Lake (Impoundment) South Fork Cherry River	Stream		Cranberry River	South Fork Cranberry River	Tea Creek Williams Birrar (Abova Droat)	Williams Kiver (Above Lycr)	Glade Creek	Meadow Creek	Mill Creek	Laurel Creek (Above Cotton Hill)	Pinch Creek	Rich Creek	Turkey Creek	Dunloup Creek (Downstream from Harvey	Sewage Treatment Plant) Foot Divor (Above Kelloveville)	Pigeon Creek	Laurel Creek	Kitchen Creek (Above Gap Mills)	Culverson Creek	Milligan Creek	Second Creek (Rt. 219 Bridge to Nickell's Mill)	North Fork Anthony Creek	Spring Creek	Anthony Creek (Above Big Draft)	watoga Lake
Fayette Nicholas Greenbrier-Nicholas " Greenbrier Greenbrier	County		Pocahontas-Webster-	Pocahontas	Pocahontas Docahontas Webster	r ocanomas- w coster	Raleigh	Summers	Fayette	=	Raleigh	Monroe	=	Fayette	Marrier	101011	Monroe	Monroe	Greenbrier	Ξ	Greenbrier-Monroe	Greenbrier "	: =	Doodrootes	rocanomas
KG KG KG KG KG KG	River Basin	Kanawha River	KGC	KGC	KGW	×54	KN	Z.	KN	KN	KN	KN	Z.	KN	N.X		KN	KNG	KNG	KNG	KNG	KNG	N. C.	DIN D	ארמ

Beaver Creek Knapp's Creek Hills Creek North Fork Deer Creek (Above Route 28/5) Deer Creek Sitlington Creek Stoney Creek Swago Creek Buffalo Fork (Impoundment) Seneca (Impoundment) Greenbrier River (Above Hosterman) West Fork-Greenbrier River (Above the impoundment at the tannery) Little River-East Fork Little River-West Fork Five Mile Run Mullenax Run Abes Run Marsh Fork Camp Creek	Mercer
Pinnacle creek	Wyoming
Pinnacle creek	Wyoming
Pinnacle creek	Wvoming
Trans	
Camp Creek	=
Marsh Fork	Mercer
Abes Run	=
Mullenax Run	£
Five Mile Run	±
Little River-West Fork	=
Little River-East Fork	=
impoundment at the tannery)	
West Fork-Greenbrier River (Above the	E
Greenbrier River (Above Hosterman)	=
Seneca (Impoundment)	=
Buffalo Fork (Impoundment)	=
Swago Creek	E
Stoney Creek	=
Sitlington Creek	=
Deer Creek	=
North Fork Deer Creek (Above Route 28/5)	E
Hills Creek	Ε
Knapp's Creek	E
Beaver Creek	E

APPENDIX B

This list contains known waters used as public water supplies and is not intended to exclude any waters as described in Section 6.2, herein.

River Basin	County	Operating Company	Source
Shenandoah River			
ß	Jefferson	Charlestown Water	Shenandoah River
Potomac River			
£.	Jefferson	3-M Company	Turkey Run
Ъ	=	Shepherdstown Water	Potomac River
Д	=	Harpers Ferry Water	Elk Run
Ь	Berkeley	DuPont Potomac River Works	Potomac River
а	=	Berkeley County PSD	Le Feure Spring
Ь		Opequon PSD	Quarry Spring
Ь	=	Hedgesville PSD	Speck Spring
Ь	Morgan	Paw Paw Water	Potomac River
pSB	Hampshire	Romney Water	South Branch Potomac River
	H		
PSB	=	Peterkin Conterence Center	Mill Kun
PSB	Hardy	Moorefield Municipal Water	South Fork River
PSB	Pendleton	U.S. Naval Radio Sta.	South Fork River
PSB	=	Circleville Water Inc.	North Fork of South Branch,
			Potomac River
PSB	Grant	Mountain Top PSD	Mill Creek, Impoundment
PSB	=	Petersburg Municipal	South Branch, Potomac
		Water	River
PNB	Grant	Island Creek Coal	Impoundment
PNB	Mineral	Piedmont Municipal Water	Savage River, Maryland
PNB	=	Keyser Water	New Creek
PNB	=	Fort Ashby PSD	Lake

Monongahela River

Colburn Creek & Monongahela River	Monongahela River	Deckers Creek Impoundment Impoundment	Impoundment Block Run	Dioce Num	Impoundment	Cheat Lake-Lake Lynn	Source		Cheat Lake-Lake Lynn	Impoundment	Cheat River	Snowy Creek	Keyser Run & Cheat River	Cheat River	Shavers & Elk Lick Fork	Thomas Reservoir	Dry Fork	Long Run	Blackwater River	Roaring Creek	Blackwater River Park	Shavers Lake	Shavers Fork	Yokum Run	Jones Run	West Fork River	Deecons & Hinkle Creek	Dog Run
Morgantown Water Comm.	Morgantown Ordinance Works	Preston County PSD Blacksville # 1 Mine Loveridge Mine	Consolidation Coal Co. Mason Town Water	IMASOU LOWIL WAICH	Fibair Inc.	Lakeview County Club	Operating Company		Union Districk PSD	Cooper's Rock State Park	Kingwood Water	Hopemount State Hosp.	Rowlesburg Water	Albright	Parsons Water	Thomas Municipal	Hamrick PSD	Douglas Water System	Davis Water	Hambleton Water System	Canaan Valley State	Cheat Mt. Sewer	Snowshoe Co. Water	Womelsdorf Water	Lumberport Water	Clarksburg Water Bd.	Bridgeport Mun. Water	Salem Water Board
Monongalia 	=	Preston Monongalia "	Dreston	ricsion	Preston	14TOHOUGANA	County		Monongalia	=	Preston	Preston	=	=	Tucker	=	=	=	=	=	=	Pocahontas	=	Randolph	Harrison	=	±	=
M	M	ZZZ	: Z Z	TAT	MC	MC	River Basin	Monongahela River	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MW	MW	MW	MW

West Fork River West Fork River Impoundment West Fork River	Hackers Creek Lake West Fork River Impoundment Impoundment	Tygart River Impoundment Tygart River Coal Corp Impoundment Impoundment Tygart River Tygart River Tygart River Impoundment Tygart River	Source Ohio River Ohio River Ohio River Ohio River
West Milford Water W.V. Water-Weston District Jackson's Mill Camp West Fork River PSD Kennedy Compresssor Station	January January Bel-Meadow Country Club Harrison Power Station Oakdale Portal Robinson Port	Fairmont Water Comm. Mannington Water Monongah Water Works Eastern Assoc. Four States Water Shinnston Water Dept. Grafton Water Phillippi Water Phillippi Water Bethlehern Mines Corp. Belington Water Works Elkins Municipal Water Beverly Water Valley Water Huttonsville Medium Security Prison Mill Creek Water	Chester Water & Sewer City of Weirton Weirton Steel Division Wheeling Water Sistersville Mun. Water
Lewis	" Harrison " "	Marion " "Harrison Taylor Barbour " " Randolph " "	County Hancock Brooke Ohio
MW MW MW MW	MW MW MW MW	TAM	Aiver Basin Ohio River O Zone 1 O Zone 1 O Zone 1 O "

River River River Siver	Glass House Hollow Wheeling Creek System North Fork, Fishing Creek Impoundment Middle Island Creek Middle Island Creek Lake/Impoundment Mill Creek Twelve Pole Creek East Lynn Lake	Little Kanawha River Little Kanawha River Little Kanawha River Steer Creek Little Kanawha River Spring Creek Mile Tree Reservoir Little Kanawha River	North Fork Hughes River North Fork Hughes River North Fork Hughes River	Cross Creek Poplar Fork & Crooked Creek Poplar Fork & Crooked Creek Kanawha River Kanawha River Kanawha River & Gum Hollow
Ohio River Ohio River Ohio River Ohio River	Glass Hous Wheeling (North Fork Impoundm Middle Isla Middle Isla Lake/Impo Mill Creek Twelve Pol East Lynn I	Little Kanav Little Kanav Little Kanav Steer Creek Little Kanav Spring Cree	North North North	Cross Poplar Poplar Kanav Kanav Kanav
Pleasants Power Station Huntington Water Corp. Mobay Chemical Co. E. I. DuPont	Meron Water New Urindahana Water Pine Grove Water Consolidated Coal Co. Middlebourne Water West Union Mun. Water Hidden Valley Country Ripley Water Wayne Municipal Water East Lynn Lake Monterey Coal Co.	Claywood Park PSD Grantsville Mun. Water Glenville Utility Consolidated Gas Compressor Burnsville Water Works Spencer Water Elizabeth Water	Cairo Water Harrisville Water Pennsboro Water	Buffalo Water Winfield Water South Putnam PSD Cedar Grove Water Pratt Water Armstrong PSD PO-K1-CO-EL
Pleasants Cabell Marshall Wood	Marshall " Wetzel Marshall Tyler Doddridge Mason Jackson Wayne "	Wood Calhoun Gilmer " Braxton Roane Wirt	Ritchie "	Putnam " " Kanawha " Fayette
	O Zone 2 O " " " O O O O O O O O O O O O O O O O	Little Kanawha LK LK LK LK LK LK LK LK	LKH LKH LKH Kanawha River	. M M M M M.

Unnamed Tributary Kanawha	Beards Fork Impoundment Impoundment Kanawha River Kanawha River	Source	Kanawha River Kanawha River	Pocatalico River Silcott Fork Dam	Coal River Little Coal River Pond Fork Workmans Creek Coal River
Kanawha Water Co	Midland Trail School Cedar Coal Co. Elkem Metals Co. Deepwater PSD	Operating Company	Kanawha Falls PSD W.V. Water-Montgomery	Sissonville PSD Walton PSD	St. Albans Water Washington PSD Lincoln PSD Coal River PSD Whitesville PSD Armco Mine 10 Armco Steel-Montc. Stickney Peabody Coal Stephens Lake Park W.V. Water-Madison Dist. Van PSD Consol. Coal Co. Water Ways Park
E	Kanawha " Fayette Fayette	County	Fayette "	Kanawha Roane	Kanawha " Lincoln Boone " Raleigh " Boone " Raleigh Boone " Kaleigh
×	***	River Basin Kanawha River	K K	KP KP	Coal River KC KC KC KC KC KC KC KC KC K

Elk River	Gauley River Impoundment/ Muddlety Creek Jim Branch Gauley River Anglins Creek & Meadow River North Fork Cherry River Mill Creek Impounded Mine (Surface) Mill Creek	Source Impoundment Impoundment Wolfe Creek Glade Creek Farley Branch	Mt. Valley Lake Bluestone Lake Impoundment Impoundment
W.V. Water-Kanawha Valley District Pinch PSD Clay Waterworks Procious PSD Flatwoods-Canoe Run PSD Sugar Creek PSD W.V. Water-Gassaway Dist. W.V. Water-Sutton Dist. W.V. Water-Sutton Dist.	Craigsville PSD Summersville Water Nettie-Leivasy PSD Cowen PSD Wilderness PSD Richwood Water Arnes Heights Water Mt. Hope Water Ansted Municipal Water	Operating Company Fayette Co. Park New River Gorge Campground Fayetteville Water Beckley Water Westmoreland Coal Co.	Jumping Branch-Nimitz Bluestone Conf. Center Pipestem State Park Town of Athens
Kanawha Clay Braxton " Webster	Nicholas " Webster Nicholas " Fayette "	County Fayette " Raleigh "	Summers " Mercer
KE KE KE KE KE	Gauley River KG KG KG KG KG KG KG KG	River Basin New River KN KN KN KN KN KN KN KN KN K	KNB KNB KNB

Impoundment Impoundment Bailey Reservoir Spring Impoundment/ Brusch Creek Impoundment Mine Impoundment	Greenbrier River & New River Greenbrier River	Greenbrier River Guyandotte River Guyandotte River Guyandotte River Guyandotte River Guyandotte River Guyandotte River Buffalo Creek/ Mine/Wells Guyandotte River Whitman Creek/ Guyandotte River Laurel Fork Impoundment Pinnacle Creek Tommy Creek Tommy Creek
Bluewell PSD Bramwell Water Green Valley-Glenwood PSD Kelly's Tank W.V. Water Princeton Lashmeet PSD Pinnacle Water Assoc. W.V. Water Bluefield	W.V. Water Hinton Big Bend PSD Alderson Water Dept. Ronceverte Water Lewisburg Water Denmar State Hospital Water City of Marlinton Water Cass Scenic Railroad Upper Greenbrier PSD	Salt Rock PSD West Hamlin Water Logan Water Board Man Water Works Buffalo Creek PSD Chapmanville Logan PSD Gilbert Water Oceana Water Glen Rogers PSD Pineville Water Raleigh Co. PSD-Amigo
	Summers Greenbrier " Pocahontas "	Cabell Lincoln Logan " Logan " Mingo Wyoming " Wyoming Raleigh Cabell
KNB KNB KNB KNB KNB KNB KNB KNB	Greenbrier River KNG KNG KNG KNG KNG KNG KNG	KNG KNG OG

Source		Impoundment Lake Washington		Big Sandy River Tug Fork	Tug Fork Tug Fork Impoundment Impoundment Impoundment Impoundment/Wells
Operating Company		Hurricane Municipal Water Lake Washington PSD		Kenova Municipal Water Fort Gay Water	Kermit Water Matewan Water A & H Coal Co., Inc. Williamson Water City of Welch
County		Putnarn Putnarn		Wayne "	Mingo " " McDowell "
River Basin	Guyandotte River	OMG	Big Sandy River	BS BS	BST BST BST BST BST BST

APPENDIX C

CATEGORY E-3 - POWER PRODUCTION

This list contains known power production facilities and is not intended to exclude any waters as described in Section 6.6.c, herein.

			wer Company							6							
Operating Company		Monongahela Power Monongahela Power Monongahela Power	Virginia Electric & Power Company		Ohio Power	Ohio Power	Ohio Power	Monongahela Power	Monongahela Power	Central Operating (AEP)	Ohio Power	Appalachian Power Co.					
Station Name		Fort Martin Power Station Rivesville Station Albright Station	Mt. Storm Power Station		Hannibal (Hvdro)	Kammer	Mitchell	Pleasants Station	Willow Island Station	Phillip Sporn Plant	Racine (Hydro)	Mountaineer	Winfield (Hydro)	Marmet (Hydro)	London (Hydro)	Kanawha River	John E. Amos
County		Monongalia Marion Preston	Grant		Wetzel	Marshall	=	Pleasants	=	Mason	=	±	Putnam	Kanawha	=	=	E
River Basin	Monongahela River	M MC	Potomac	Ohio River	O - Zone 1	= 0	<u>"</u> " O	<u> </u>	<u>.</u> . 0	<u> </u>	# # O	<u>.</u> . 0	K	×	¥	K	K

APPENDIX D

CATEGORY C - WATER CONTACT RECREATION

This list contains waters known to be used for water contact recreation and is not intended to exclude any waters as described in section 6.4, herein.

County	Jefferson	Jefferson Hampshire Berkeley Morgan Berkeley Morgan	Hampshire Hardy Grant	Pendleton Grant Grant Mineral Grant Grant Grant Grant		Monongalia/Preston
Stream	Shenandoah River	Potomac River " " Sleepy Creek & Meadow Branch North Fork of	South Branch of Potomac River	Hawes Run Spring Run North Fork South Branch Potomac River North Branch of Potomac River North Fork Linton Creek Linton Creek Stoney River-Mt. Storm Lake Cacapon River		Cheat Lake/Cheat river
Stream Code	α	P. P	PSB PSB PSB	PSB-21-X PSB-25-C-2 PSB-28 PNB PNB-4-EE PNB-7-H PNB-17		MC
River Basin	Shenandoah	Potomac	South Branch	North Branch	Monongalia	Cheat

47CSR2

Preston Monongalia Preston	Randolph	Barbour/Randolph/ Upshur Harrison	Lewis	County	Brooke/Cabell/ Hancock/Jackson/ Marshall/Mason/Ohio/ Pleasants/Tyler/ Waync/Wood/Wetzel	Wayne	Wayne	Cabell Mason	Doddridge	Cabell Wyoming	Cabell
Alpine Lake Coopers Rock Lake/ Quarry Run Big Sandy Creek	Shavers Fork	Middle Fork River West Fork River	Stonecoal Creek/ Stonecoal Lake	Stream	Ohio River	Beech Fork of Twelvepole Creek/Beech	East Fork of Twelvepole Creek/East	Fourpole Creek Old Town Creek/ McClintic Ponds	Middle Island Creek/ Crystal Lake	Guyandotte River Guyandotte River/ R. D. Bailey Lake	Mud River
MC MC-6 MC-12	MSC	MTN WW	MW-18	Stream Code	0	0-2-Н	0-2-0	0-3 0-21	OMI	90 90	OGM

River Basin Ohio

Braxton	Fayette/Kanawha/	Mason	Kanawha Raleigh	Kanawha/Clay/	Braxton	Fayette/Raleigh/	Summers Raleigh	Greenbrier/ Pocahontas/Summers	Мопгое	Greenbrier Greenbrier	County	Summers	Webster Nicholas	Webster
Little Kanawha River/ Burnsville Lake	Kanawha River	Unnamed Tributary Krodel Lake	Coal River Stephens Branch/ Lake Stephens	Elk River	Sutton Lake	New River	Little Beaver Creek	Greenbrier River	Little Devil Creek/ Moncove Lake	Anthony Creek Meadow Creek/ Lake Sherwood	Stream	Bluestone River/ Bluestone Lake	Gauley River Gauley River/ Summersville Lake	Williams River
LK	M	K-1	KC-45-Q	KE	KE	KN	KN-26-F	KNG	KNG-23-E-1	KNG-28 KNG-28-P	Stream Code	KNB	KG KG	KGW
Little Kanawha	Kanawha										River Basin		Kanawha	

47CSR2 APPENDIX E, TABLE 1

		ALL OTHER ITSES	
	HUMAN HEALTH	A^4	
TION	HUMAN	ඩ	
USE DESIGNATION		2	CHRON ²
Ü	AQUATIC LIFE	B2	ACUTE ¹ CHRON ² ACUTE ¹ CHRON ²
	AQUAT	B4	CHRON ²
		B1, B4	ACUTE ¹
		PAKAMETEK	

8.1 Dissolved Aluminum (ug/1)	750xCF ⁵	750xCF ⁵	750xCF ⁵	87xCF ⁵			
8.2. Acute and chronic aquatic life criteria for ammonia shall be determined using the National Criterion for Ammonia in Fresh Water ^d from USEPA's 1999 Update of Ambient Water Quality Criteria for Ammonia (EPA-822-R-99-014, December 1999)	×	×	×	×			
8.3 Antimony (ug/l)				W WWW.	4300	14	
8.4 Arsenic (ug/l)					10	10	100
8.4.1 Dissolved Trivalent Arsenic (ug/l)	340	150	340	150			
8.5 Barium (mg/l)						1.0	
8.6 Beryllium (ug/l)	130		130			<i>LL</i> 00.	es a consecue de la c
8.7 Cadmium (ug/l) Hardness (mg/l CaCO ₃) 0 - 35 36 - 75 76 - 150 5.0 10.0						×	

			SI	USE DESIGNATION	TION		
		AQUAT	AQUATIC LIFE		HUMAN	HUMAN HEALTH	
PAKAMETEK	B1, B4	B4	В	B2	ເລ	A^4	ALL OTHER TISES
	ACUTE ¹	CHRON ²	ACUTE ¹ CHRON ² ACUTE ¹ CHRON ²	$CHRON^2$			

8.7.1 10 ug/l in the Ohio River (O Zone 1) main stem (see section 7.1.d, herein)						×	
8.7.2 The four-day average concentration of dissolved cadmium determined by the following equation: $Cd = e^{(0.7409 ln(tardness)]-4.719)} \times CF^5$		X		X			
8.7.3 The one-hour average concentration of dissolved cadmium determined by the following equation: $Cd = e^{(1.0166[ln(bardness)]-3.924)} \times CF^5$	×		×		Total Control		
8.8 Chloride (mg/l)	098	230	860	230	250	250	
8.9.1 Chromium, dissolved hexavalent (ug/l):	16	11	16	7.2		50	
8.9.2 Chromium, trivalent (ug/l) The one-hour average concentration of dissolved trivalent chromium determined by the following equation: CIII = e ^{(0.8190]In(hardness)]+3.7256)} x CF ⁵	×		×				
8.9.3 The four-day average concentration of dissolved trivalent chromium determined by the following concentration: CHII = e ^{(0.8190]In(hardnoss)]+0.6848)} x CF ⁵		×		×			
8.10 Copper (ug/l)						1000	

		ALL OTHER	
	HUMAN HEALTH	A^4	
TION	HUMAN	ຄວ	
USE DESIGNATION		B2	CHRON ²
NS	AQUATIC LIFE	В	$ACUTE^1$ CHRON ² $ACUTE^1$ CHRON ²
	AQUAT	B4	CHRON ²
		B1, B4	ACUTE ¹
		PAKAMETEK	
	ř	PAI	

8.10.1 The four-day average concentration of dissolved copper determined by the following equation. Cu = e ^{(0.8545[In(tardnoss)]-1.702)} x CF ⁵		×		×			
8.10.2 The one-hour average concentration of dissolved copper determined by the following equation ^a : $C_{\rm U} = e^{(0.9422) [\ln(hardness)]-1.700)} \times CF^5$	×		×				
8.11 Cyanide (ug/l) (As free cyanide HCN+CN')	22	5.0	22	5.0	5.0	5.0	
8.12 Dissolved Oxygen ^c : not less than 5 mg/l at any time.	X				X	×	X
8.12.1 Kanawha River main stem, Zone 1 - Not less than 4.0 mg/l at any time.	X			***************************************			
8.12.2 Ohio River main stem - the average concentration shall not be less than 5.0 mg/l per calendar day and shall not be less than 4.0 mg/l at any time or place outside any established mixing zone - provided that a minimum of 5.0 mg/l at any time is maintained during the April 15-June 15 spawning season.	×						
8.12.3 Not less than 7.0 mg/l in spawning areas and in no case less than 6.0 mg/l at any time.				×			•

		ALL OTHER	
	HUMAN HEALTH	P ₄	
TION	HUMAN	ည	
USE DESIGNATION		2	CHRON ²
SO	AQUATIC LIFE	B2	ACUTE ¹ CHRON ² ACUTE ¹ CHRON ²
	AQUAT	B4	CHRON ²
		B1, B4	$ACUTE^1$
	ממדימ) א א מ א מ	FAKAMEIEK	

8.13 Fecal Coliform: Maximum allowable level of fecal coliform content for Water Contact Recreation (either MPN or MF) shall not exceed 200/100 ml as a monthly geometric mean based on not less than 5 samples per month; nor to exceed 400/100 ml in more than ten percent of all samples taken during the month.			×	×	
8.13.1 Ohio River main stem (zone 1) - During the non-recreational season (November through April only) the maximum allowable level of fecal coliform for the Ohio River (either MPN or MF) shall not exceed 2000/100 ml as a monthly geometric mean based on not less than 5 samples per month.			×	×	
8.14 Fluoride (mg/l)				1.4	
8.14.1 Not to exceed 2.0 for category D1 uses.					×
8.15 Iron ^c (mg/l)	1.5	0.5		1.5	
8.16 Lead (ug/l)				50	
8.16.1 The four-day average concentration of dissolved lead determined by the following equation ^a : Pb = $e^{(1.273[\mu(bardness)]-4.705)}x$ CF ⁵	×	×			

	HUMAN HEALTH	ALL OTHER	
TION	HUMA	చ్	
USE DESIGNATION		B2	CHRON ²
Sn	AQUATIC LIFE	g B	ACUTE ¹ CHRON ² ACUTE ¹ CHRON ²
	AQUA	B1, B4	CHRON ²
		B1,	ACUTE ¹
		FAKAMETEK	

8.16.2 The one-hour average concentration of dissolved lead determined by the following equation. Pb = $e^{(1.273]$ ln(hardnes)]-1.46) x CF ⁵	×		×				
8.17 Manganese (mg/l) (see §6.2.d)						1.0	
8.18 Mercury The total organism body burden of any aquatic species shall not exceed 0.5 ug/g as methylmercury.					0.5	0.5	
8.18.1 Total mercury in any unfiltered water sample (ug/l):	2.4		2.4		0.15	0.14	
8.18.2 Methylmercury (water column) (ug/l):		.012		.012			
Nickel (ug/l)					4600	510	
8.19.1 The four-day average concentration of dissolved nickel determined by the following equation ^a : Ni = $e^{(0.846]\ln(\text{hardness})]+0.0584}$ x CF ⁵		×		X			
8.19.2 The one-hour average concentration of dissolved nickel determined by the following equation. Ni = e ^(0.846 Inflardness)]+2.255) x CF ⁵	X		X				
8.20 Nitrate (as Nitrate-N) (mg/l)						10	

		ALL OTHER	
	HUMAN HEALTH	4	
TION	HUMAN	C3	
USE DESIGNATION	AQUATIC LIFE	B2	CHRON ²
OS		В	$ACUTE^{1}$ CHRON ² $ACUTE^{1}$ CHRON ²
	AQUAT	B4	CHRON ²
		B1, B4	ACUTE ¹
		FAKAMEIEK	

8.21 Nitrite (as Nitrite-N) (mg/l)	1.0		0.	.060			
8.22 Nutrients							
Chlorophyll –a (μg/l) (see §47-2-8.3)							нининин пониний пинка понаженей нем динентательного по
Total Phosphorus (μg/l) (see §47-2-8.3)							
8.23 Organics							
Chlordane ^b (ng/l)	2400	4.3	2400	4.3	0.46	0.46	0.46
DDT ^b (ng/l)	1100	1.0	1100	1.0	0.024	0.024	0.024
Aldrin ^b (ng/l)	3.0		3.0		0.071	0.071	0.071
Dieldrin ^b (ng/l)	2500	1.9	2500	1.9	0.071	0.071	0.071
Endrin (ng/l)	180	2.3	180	2.3	2.3	2.3	2.3
Toxaphene ^b (ng/l)	730	0.2	730	0.2	0.73	0.73	0.73
PCB ^b (ng/l)		14.0		14.0	0.045	0.044	0.045
Methoxychlor (ug/l)		0.03		0.03	0.03	0.03	0.03
Dioxin (2,3,7,8-TCDD) ^b (pg/l)					0.014	0.013	0.014
Acrylonitrile ^b (ug/l)					99'0	0.059	
Benzene ^b (ug/l)					51	99.0	
1,2-dichlorobenzene (mg/l)					17	2.7	
1,3-dichlorobenzene (mg/l)					2.6	0.4	

			US	USE DESIGNATION	TION		
מחחידו גו מו מ		AQUAT	AQUATIC LIFE		HUMAN	HUMAN HEALTH	
PAKAME1 EK	B1, B4	B4	B	B2	ຄ	A^4	ALL OTHER TISES
	\mathbf{ACUTE}^1	$ACUTE^1$ CHRON ² $ACUTE^1$ CHRON ²	$ACUTE^1$	CHRON ²			

1,4-dichlorobenzene (mg/l)				2.6	0.4	
2,4-dinitrotoluene ^b (ug/l)				9.1	0.11	
Hexachlorobenzene ^b (ng/l)				0.77	0.72	
Carbon tetrachloride ^b (ug/l)				4.4	0.25	
Chloroform ^b (ug/l)				470	5.7	
Bromoform ^b (ug/l)				140	4.3	
Dichlorobromomethane ^b (ug/l)		- A		17	0.55	
Methyl Bromide (ug/l)				1500	47	
Methylene Chloride ^b (ug/l)			W TO THE TO THE TOTAL PROPERTY OF THE TOTAL	590	4.6	
1,2-dichloroethane ^b (ug/l)				66	0.035	
1,1,1- trichloroethane ^b (mg/l)					12	
1,1,2,2-tetrachloroethane (ug/l)				11	0.17	
1,1-dichloroethylene ^b (ug/l)				3.2	0.03	
Trichloroethylene ^b (ug/l)				81	2.7	
Tetrachloroethylene ^b (ug/l)				8.85	0.8	
Toluene ^b (mg/l)				200	8.9	
Acenaphthene (ug/l)				066	670	
Anthracene (ug/l)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			40,000	8,300	
Benzo(a) Anthracene ^b (ug/I)				0.018	0.0038	

47CSR2 APPENDIX E, TABLE 1

		A ⁴ ALL OTHER ITSES	
FION	HUMAN HEALTH	చ్	. 12
USE DESIGNATION		2	CHRON ²
US	AQUATIC LIFE	B2	ACUTE ¹ CHRON ² ACUTE ¹ CHRON ²
	AQUAT	B4	CHRON ²
		B1, B4	ACUTE ¹
	districtly at a district	FAKAMEIEK	

Benzo(a) Pyrene ^b (ug/l)					0.018	0.0038	
Benzo(b) Fluoranthene ^b (ug/l)					0.018	0.0038	
Benzo(k) Fluoranthene ^b (ug/l)					0.018	0.0038	
Chrysene ^b (ug/l)					0.018	0.0038	
Dibenzo(a,h)Anthracene ^b (ug/l)					0.018	0.0038	
Fluorene (ug/l)					5300	1100	
Ideno(1,2,3-cd)Pyrene ^b (ug/l)					0.018	0.0038	
Pyrene (ug/l)					4000	830	
2-Chloronaphthalene (ug/l)					1600	1000	
Phthalate esters ⁶ (ug/l)		3.0		3.0			
Vinyl chloride ^b (chloroethene) (ug/l)					525	2.0	
alpa-BHC (alpha- Hexachloro- cyclohexane) ⁶ (ug/l)					0.013	.0039	
beta-BHC(beta- Hexachloro-cyclohexane) ^b (ug/l)	THE PROPERTY OF THE PROPERTY O		WITH THE PROPERTY OF THE PROPE		0.046	0.014	e crig
gamma-BHC (gamma- Hexachloro- cyclohexane) ^b (ug/l)	2.0	0.08	2.0	0.08	0.063	0.019	
Chlorobenzene (mg/l)					21	0.68	
Ethylbenzene (mg/l)					29	3.1	
Heptachlor ^b (ng/l)	520	3.8	520	3.8	0.21	0.21	

			SIN	USE DESIGNATION	TION		
		AQUAT	AQUATIC LIFE		HUMAN	HUMAN HEALTH	
PAKAIVIE I EIK	B1, B4	B4	В	B2	చ	A^4	ALL OTHER TISES
	ACUTE ¹	CHRON ²	$ACUTE^1$ CHRON ² $ACUTE^1$ CHRON ²	$CHRON^2$			

2-methyl-4,6-Dinitrophenol (ug/l)					765	13.4	
Fluoranthene (ug/I)					370	300	er en
When the specified criteria for organic chemicals listed in §8.23 are less than the practical laboratory quantification level, instream values will be calculated from discharge concentrations and flow rates, where applicable.							
8.24 pH ^c No values below 6.0 nor above 9.0. Higher values due to photosynthetic activity may be tolerated.	×	X	X	X	X	X	×
8.25 Phenolic Materials							
8.25.1 Phenol (ug/l)					4,600,0	21,00	
8.25.2 2-Chlorophenol (ug/l)			777700000000000000000000000000000000000		400	120	
8.25.3 2,4-Dichlorophenol (ug/l)					790	93	
8.25.4 2,4-Dimethylphenol (ug/l)					2300	540	
8.25.5 2,4-Dinitrophenol (ug/l)					14,000	70	
8.25.6 Pentachlorophenol ^b (ug/l)					8.2	0.28	
8.25.6.a The one-hour average concentration of pentachlorophenol determined by the following equation: exp(1.005(pH)-4.869)	×		×				

			SIO	USE DESIGNATION	TION		
		AQUAT	AQUATIC LIFE		HUMAN	HUMAN HEALTH	
PAKAMEIEK	B1, B4	B4	В	B2	చ్	${f A}^4$	ALL OTHER TISES
	ACUTE ¹	CHRON ²	$ACUTE^1$ CHRON ² $ACUTE^1$ CHRON ²	CHRON ²			

8.25.6.b. The 4-day average concentration of							TOTAL LOCATION IN THE PROPERTY OF THE CASE
pentachlorophenol determined by the following equation: exp(1.005(pH)-5.134).		×		X			
8.25.7 2,4,6-Trichlorophenol ^b (ug/l)					6.5	2.1	
8.26 Radioactivity: Gross Beta activity not to exceed 1000 picocuries per liter (pCi/l), nor shall activity from dissolved strontium-90 exceed 10 pCi/l, nor shall activity from dissolved alpha emitters exceed 3 pCi/l.	×		×		X	×	X
8.26.1 Gross total alpha particle activity (including radium-226 but excluding radon and uranium shall not exceed 15 pCi/l and combined radium-226 and radium-228 shall not exceed 5pCi/l; provided that the specific determination of radium-226 and radium-228 are not required if dissolved particle activity does not exceed 5pCi/l; the concentration of tritium shall not exceed 20,000 pCi/l; the concentration of total strontium-90 shall not exceed 8 pCi/l in the Ohio River main stem.	×		×	M	×	X	×
8.27 Selenium (ug/l)	20	5	20	5		95	

47CSR2 APPENDIX E, TABLE 1

	HUMAN HEALTH	A ⁴ ALL OTHER	
TION	HUMAN	ည	
USE DESIGNATION		B2	CHRON ²
US	AQUATIC LIFE	g	CUTE ¹ CHRON ² ACUTE ¹ CHRON ²
	AQUAT	B4	CHRON ²
		B1, B4	ACUTE ¹
		PAKAMETEK	

8.28 Silver (ug/l)							
· Hardness Silver							
0-50				;		,	
				×		×	
>201 24	en e						
8.28.1		ALIMOD SWA					
0-50 1							
51-100 4			water to see			-	
101-200 12		***************************************					
		×			•		
401-500 30							
501-600 43							WWW. 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000
8.28.2 The one-hour average concentration	ation	······································					
of dissolved silver determined by the		•					
following equation:	:						
$\parallel Ag=e^{(1.72[m(\mu m \cos y)]-0.39)} \times CF^3$	× -		×				

		ALL OTHER	
	HUMAN HEALTH	A^4	
TION	HUMAN	ຄ	
USE DESIGNATION		B2	CHRON ²
SN	AQUATIC LIFE	a	ACUTE ¹ CHRON ² ACUTE ¹ CHRON ²
	AQUAT	B4	CHRON ²
		B1, B4	ACUTE1
		FAKAMEIEK	

8.29 Temperature Temperature rise shall be limited to no more than 5°F above natural temperature, not to exceed 87°F at any time during months of May through November and not to exceed 73°F at any time during the months of December through April. During any month of the year, heat should not be added to a stream in excess of the amount that will raise the temperature of the water more than 5°F above natural temperature. In lakes and reservoirs, the temperature of the epilimmion should not be raised more than 3°F by the addition of heat of artificial origin. The normal daily and seasonable temperature fluctuations that existed before the addition of heat due to other natural causes should be maintained.	. ×			
8.29.1 For the Kanawha River Main Stem (K-1): Temperature rise shall be limited to no more than 5°F above natural temperature, not to	×			

47CSR2 APPENDIX E, TABLE 1

	1	ALL OTHER	
	HUMAN HEALTH	A^4	
TION	HUMAN	ຄ	
USE DESIGNATION		2	CHRON ²
SN	AQUATIC LIFE	BŻ	CHRON ² ACUTE ¹
	AQUAT	B4	CHRON ²
		B1, B4	$ACUTE^1$
	מחקור גי מי מי	FAKAIVIE1 EK	

8.29.2 For the Bluestone R (KNB), Bluestone Lake (KN-60) East River (KNE), New River (KN), Gauley R. (KG) and Greenbrier River (KNG): Temperature rise shall be limited to no more than 5°F above natural temperature, not to exceed 81°F at any time during the months of May through November and not to exceed 73°F at any time during December through April.	•••••	×		
8.29.3 No heated effluents will be discharged in the vicinity of spawning areas. The maximum temperatures for cold waters are expressed in the following table: Daily Hourly Max °F Oct-Apr 50 55 55 Sep-May 58 62 100 Feb.	weet and the second sec	×		

		ALL OTHER	
	HEALTH	A^4	
VTION	HUMAN HEALTH	ຄ	
USE DESIGNATION		2	CHRON ²
(SN	AQUATIC LIFE	B2	$CUTE^1$ CHRON ² ACUTE ¹ CHRON ²
	AQUAT	B4	CHRON ²
		B1, B4	ACUTE ¹
	מידוקיקו אי מי א מ	FAKAMETEK	

8.32.1 No chlorinated discharge allowed		×				
8.33 Turbidity						
No point or non-point source to West		***************************************				
Virginia's waters shall contribute a net load	3					
of suspended matter such that the turbidity	h***********					
exceeds 10 NTU's over background turbidity						
when the background is 50 NTU or less, or						
have more than a 10% increase in turbidity			***************************************			
(plus 10 NTU minimum) when the						
background turbidity is more than 50 NTUs.						
This limitation shall apply to all earth						
disturbance activities and shall be determined						
by measuring stream quality directly above						
and below the area where drainage from such						
activity enters the affected stream. Any earth				,		
disturbing activity continuously or						
intermittently carried on by the same or					•	
associated persons on the same stream or	>		>	>	>	
tributary segment shall be allowed a single	<		<	<	<	
net loading increase.						

47CSR2 APPENDIX E, TABLE 1

		ALL OTHER	
	HUMAN HEALTH	A^4	
TION	HUMAN	ຄ	
USE DESIGNATION		B2	CHRON ²
US	AQUATIC LIFE	В	$ CUTE^1 CHRON^2 ACUTE^1 $
	AQUAT	B4	CHRON ²
		B1, B4	\mathbf{ACUTE}^1
		FAKAMEIEK	

8.33.1 This rule shall not apply to those activities at which Best Management Practices in accordance with the State's adopted 208 Water Quality Management Plan are being utilized, maintained and completed on a site-specific basis as determined by the appropriate 208 cooperative or an approved Federal or State Surface Mining Permit is in effect. This exemption shall not apply to Trout Waters.		×			X	×	
8.34 Zinc (ug/1) The four-day average concentration of dissolved zinc determined by the following equation a : $Z_n = e^{(0.8473 \ln(\text{bardness})] + 0.884)} \times CF^5$		X		X			
8.34.1 The one-hour average concentration of dissolved zinc determined by the following equation ^a : $Z_{\rm II} = e^{(0.847) [\ln(hardmess)]+0.884)} \times {\rm CF}^5$	×		×				

One hour average concentration not to be exceeded more than once every three years on the average, unless otherwise noted.

² Four-day average concentration not to be exceeded more than once every three years on the average, unless otherwise noted.

³ These criteria have been calculated to protect human health from toxic effects through fish consumption, unless otherwise noted. Concentration not to be exceeded, unless otherwise noted.

⁴ These criteria have been calculated to protect human health from toxic effects through drinking water and fish consumption, unless otherwise noted. Concentration not to be exceeded, unless otherwise noted.

⁵ The appropriate Conversion Factor (CF) is a value used as a multiplier to derive the dissolved aquatic life criterion is found in Appendix E, Table 2.

⁶ Phthalate esters are determined by the summation of the concentrations of Butylbenzyl Phthalate, Diethyl Phthalate, Dimethyl Phthalate, Di-n-Butyl Phthalate and Din-Octyl Phthalate.

47CSR2 ... APPENDIX E, TABLE 1

		ALL OTHER	
	HUMAN HEALTH	A^4	
TION		ເລ	
USE DESIGNATION		2	CHRON ²
SO	AQUATIC LIFE	B2	CUTE ¹ CHRON ² ACUTE ¹ CHRON ²
	AQUAT	B4	CHRON ²
		B1, B4	ACUTE ¹
	CHARLES CALL	FARAINETER	

^a Hardness as calcium carbonate (mg/l). The minimum hardness allowed for use is this equation shall not be less than 25 mg/l, even if the actual ambient hardness is less than 25 mg/l. The maximum hardness value for use in this equation shall not exceed 400 mg/l even if the actual hardness is greater than 400 mg/l.

^b Known or suspected carcinogen. Human health standards are for a risk level of 10⁻⁶.

^c May not be applicable to wetlands (B4) - site-specific criteria are desirable.

d The early life stage equation in the National Criterion shall be used to establish chronic criteria throughout the state unless the applicant demonstrates that no early life stages of fish occur in the affected water(s).

47CSR2

APPENDIX E TABLE 2

Conversion Factors

Metal	Acute	Chronic
Aluminum	1.000	1.000
Arsenic (III)	1.000	1.000
Cadmium	1.136672-[(ln hardness)(0.041838)]	1.101672-[(ln hardness)(0.041838)]
Chromium (III)	0.316	0.860
Chromium(VI)	0.982	0.962
Copper	0.960	0.960
Lead	1.46203-[(ln hardness)(0.145712)]	1.46203-[(ln hardness)(0.145712)]
Nickel	0.998	0.997
Silver	0.85	N/A
Zinc	0.978	0.986

47CSR2

APPENDIX F COOL WATER LAKES

This list contains lakes to be managed for cool water fisheries and is not intended to exclude any waters which meet the definition in Section 2.2.

River Basin	County	<u>Lake</u>
Potomac River		
PC	Hardy Lost River	Trout Pond (Impoundment)
PC	Hardy Lost River	Rock Cliff Lake (Impoundment)
PSB	Pendleton	Hawes Run (Impoundment)
PNB	Mineral	New Creek Dam 14(Impoundment)
Monongahela River		
MC	Monongalia	Coopers Rock (Impoundment)
MC	Monongalia	Cheat Lake
MC	Tucker	Thomas Park (Impoundment)
MC	Randolph	Spruce Knob Lake (Impoundment)
MT	Taylor	Tygart Lake
MW	Lewis	Stonecoal Lake
Kanawha River		
KC	Raleigh	Stephens Lake (Impoundment)
KG	Nicholas	Summersville Reservoir (Impoundment)
KG	Greenbrier	Summit Lake (Impoundment)
KNG	Pocahontas	Watoga Lake
KNG	Pocahontas	Buffalo Fork (Impoundment)
KNG	Pocahontas	Seneca (Impoundment)
KCG	Pocahontas	Handley Pond
Guyandotte River		
OG	Wyoming/Mingo	RD Bailey Lake